The largest component in critical random intersection graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Component Evolution in General Random Intersection Graphs

Random intersection graphs (RIGs) are an important random structure with algorithmic applications in social networks, epidemic networks, blog readership, and wireless sensor networks. RIGs can be interpreted as a model for large randomly formed non-metric data sets. We analyze the component evolution in general RIGs, giving conditions on the existence and uniqueness of the giant component. Our ...

متن کامل

Component Evolution in Random Intersection Graphs

We study the evolution of the order of the largest component in the random intersection graph model which reflects some clustering properties of real–world networks. We show that for appropriate choice of the parameters random intersection graphs differ from Gn,p in that neither the so-called giant component, appearing when the expected vertex degree gets larger than one, has linear order nor i...

متن کامل

The Largest Component in Subcritical Inhomogeneous Random Graphs

as was introduced by Bollobás, Janson and Riordan in [1]. Here S is a separable metric space and μ is a Borel probability measure on S . No relationship is assumed between x (n) i and x (n′) i . To simplify notation we shall from now on write (x1, . . . , xn) = (x (n) 1 , . . . , x (n) n ). We begin by recalling some basic definitions and assumptions from [1]. For each n let (x1, . . . , xn) be...

متن کامل

The Largest Component in an Inhomogeneous Random Intersection Graph with Clustering

Given integers n and m = ⌊βn⌋ and a probability measure Q on {0, 1, . . . ,m}, consider the random intersection graph on the vertex set [n] = {1, 2, . . . , n} where i, j ∈ [n] are declared adjacent whenever S(i)∩S(j) 6= ∅. Here S(1), . . . , S(n) denote the iid random subsets of [m] with the distribution P(S(i) = A) = (m |A| −1 Q(|A|), A ⊂ [m]. For sparse random intersection graphs, we establi...

متن کامل

The Largest Eigenvalue Of Sparse Random Graphs

We prove that for all values of the edge probability p(n) the largest eigenvalue of a random graph G(n, p) satisfies almost surely: λ1(G) = (1 + o(1))max{ √ ∆, np}, where ∆ is a maximal degree of G, and the o(1) term tends to zero as max{ √ ∆, np} tends to infinity.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discussiones Mathematicae Graph Theory

سال: 2018

ISSN: 1234-3099,2083-5892

DOI: 10.7151/dmgt.2052